Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38255696

RESUMO

This contribution provides the first agroeconomic account of the application of a mineral microgranular fertilizer and an organomineral microgranular fertilizer directly beneath the corn in comparison to a common mineral band fertilizer in temperate climate regions. The focus of the study is on the reduction in phosphorus inputs while maintaining the yield of maize plants (Zea mays). The study used a three-year field trial to tabulate dry matter yields using the two phosphorus-reduced microgranular fertilizers, as well as a standard diammonium phosphate (DAP) fertilization method. The application of the organomineral microgranular fertilizer resulted in dry matter yields that were 15% higher (2.8 Mg per hectare) than the DAP variant, while higher yields using the mineral microgranular fertilizer only occurred in a single year. The higher yield of the organomineral microgranular fertilizer and the lower phosphorus amounts as a result of using that product resulted in a moderate phosphorus excess of 2.7 kg P ha-1, while DAP fertilization resulted in a surplus of 25.5 kg per hectare. The phosphorus balance on the plots fertilized with the mineral microgranular fertilizer followed a pattern similar to that of the organomineral microgranular fertilizer. We conclude that both microgranular fertilizers, applied directly beneath the corn, provide an adequate alternative to widespread DAP fertilization as a fertilizer band in maize cultivation on fertile soils.

2.
Microorganisms ; 11(7)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37512836

RESUMO

Many studies describe the positive effect of mycorrhiza, but few report on negative effects. Furthermore, there is a research gap on the mechanisms under which conditions the symbiotic mycorrhizal plant interaction or a parasitic one predominates. The study was conducted as a field experiment over three years to investigate the effect of mycorrhiza (Rhizoglomus intraradices) and soil bacteria applications on fertile soil. A standard fertilizer (diammonium phosphate) and two microgranular fertilizers (mineral and organomineral) were applied alone or in combination with the biostimulants mycorrhiza and/or soil bacteria (Bacillus velezensis). The application of the mycorrhiza as the only biostimulant resulted in lower yields compared to all fertilizer variants without the mycorrhiza or with mycorrhiza in combination with soil bacteria in the dry years 2015 (p = 0.0241) and 2016 (p = 0.0003). The usage of soil bacteria alone, or soil bacteria with fertilizer, resulted in few occasional significant differences. The combination with soil bacteria raised the yield of mycorrhiza-treated fertilizer variants to a significant extent in 2015 (p = 0.0007) and 2016 (p = 0.0019). The negative effects of mycorrhiza application in this study were alleviated by the simultaneous use of soil bacteria. Treatments with organomineral microgranular fertilizer, which were expected to promote the naturally occurring soil microbiome more than the mineral fertilizer variants, were most negatively affected by the mycorrhiza. We hypothesize that the naturally occurring microbiome of the study site was already optimal for maize plants, and thus the successful introduction of other microorganisms through the application of the mycorrhiza and soil bacteria tended not to be beneficial. The present study is the first report on the negative influence of arbuscular mycorrhiza on maize yields gained with a standard fertilizer (diammonium phosphate) and two microgranular fertilizer, and the alleviation of that impact by combined application of soil bacteria. We conclude that the application of the used biostimulants may have negative impacts on maize yield if the soil is already rich in nutrients and water is the limiting factor.

3.
Front Plant Sci ; 13: 1069842, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714738

RESUMO

Information provided by population genetic studies is often necessary to effectively protect endangered species. In general, such data is scarce for aquatic plants and this holds also for Luronium natans, an aquatic macrophyte endemic to northwestern and western Europe. It is threatened across its whole distribution range due to human influences, in particular due to eutrophication and intensive fish farming. In spite of habitat protection populations continue to decline and re-introductions are one possibility to prevent the species' extinction. Therefore, insights in genetic diversity and relatedness of source populations is warranted. Thus, we performed Amplified Fragment-Length Polymorphism (AFLP) on two large populations in Saxony, Germany (Großenhainer Pflege and Niederspree), complemented with numerous additional occurrences from Europe. In addition, we conducted experiments on plant growth to assess optimal conditions for ex-situ cultivation taking water temperature, water level and substrate into account. We revealed considerably high levels of genetic diversity within populations (Shannon Indices ranged from 0.367 to 0.416) implying that populations are not restricted to clonal growth only but reproduce also by open-pollinated flowers. Remarkably, the two geographically close Saxon populations were genetically distant to each other but subpopulations within a locality were completely intermingled. Concerning optimal cultivation conditions, longest roots were obtained at temperatures >14°C and saturated, but not submerging water levels. Thus, our findings advocate for a re-introduction scheme from nearby source populations and provide detailed information on successful ex-situ cultivation.

4.
Ecol Evol ; 10(2): 678-691, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32015835

RESUMO

Functional traits are proxies for plant physiology and performance, which do not only differ between species but also within species. In this work, we hypothesized that (a) with increasing precipitation, the percentage of focal species which significantly respond to changes in grazing intensity increases, while under dry conditions, climate-induced stress is so high that plant species hardly respond to any changes in grazing intensity and that (b) the magnitude with which species change their trait values in response to grazing, reflected by coefficients of variation (CVs), increases with increasing precipitation. Chosen plant traits were canopy height, plant width, specific leaf area (SLA), chlorophyll fluorescence, performance index, stomatal pore area index (SPI), and individual aboveground biomass of 15 species along a precipitation gradient with different grazing intensities in Mongolian rangelands. We used linear models for each trait to assess whether the percentage of species that respond to grazing changes along the precipitation gradient. To test the second hypothesis, we assessed the magnitude of intraspecific trait variability (ITV) response to grazing, per species, trait, and precipitation level by calculating CVs across the different grazing intensities. ITV was most prominent for SLA and SPI under highest precipitation, confirming our first hypothesis. Accordingly, CVs of canopy height, SPI, and SLA increased with increasing precipitation, partly confirming our second hypothesis. CVs of the species over all traits increased with increasing precipitation only for three species. This study shows that it remains challenging to predict how plant performance will shift under changing environmental conditions based on their traits alone. In this context, the implications for the use of community-weighted mean trait values are discussed, as not only species abundances change in response to changing environmental conditions, but also values of traits considerably change. Including this aspect in further studies will improve our understanding of processes acting within and among communities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...